Code: 20CS6621

III B.Tech - II Semester - Regular Examinations - APRIL 2024

DATA VISUALIZATION (HONORS in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Explain Gibson's Affordance theory and its	L1	CO1	7 M		
		significance in data visualization.					
	b)	Describe the attributes of entities and	L2	CO1	7 M		
		relationships in the context of data					
		visualization, highlighting their importance.					
OR							
2	a)	Differentiate between the types of attributes	L2	CO1	4 M		
		used in data visualization and discuss their					
		significance.					
	b)	List and briefly explain the stages involved	L1	CO1	10 M		
		in data visualization according to the					
		Foundations for an Applied Science.					
	1	'		ı	1		

		UNIT-II			
3	a)	Explain the fundamental components of the Visualization Pipeline from both a conceptual and implementation perspective.	L1	CO2	8 M
	b)	Why color mapping is needed in visualization and explain the primary considerations for effective color maps.	L1	CO1	6 M
		OR			
4	a)	Recall the key elements involved in Scalar Visualization and describe their significance in data representation.	L1	CO3	7 M
	b)	Explain the significance of choosing appropriate color schemes in designing effective color maps.	L2	CO2	7 M
		UNIT-III			
5	a)	Define vector glyphs and Identify the key principles behind vector color coding in data visualization.	L1	CO2	7 M
	b)	Compare and contrast different methods for grid construction from scattered points.	L2	CO3	7 M
	1	OR		<u> </u>	
6	a)	What is Texture-Based Vector Visualization? Provide a brief overview of its key characteristics and applications.	L1	CO3	7 M
	b)	Design a grid construction strategy for a given set of scattered points, considering specific constraints and requirements.	L3	CO2	7 M

		UNIT-IV			
7	a)	Explain the significance of choosing appropriate image data representation methods in the context of efficient image processing.	L2	CO2	7 M
	b)	Demonstrate how shape representation techniques can be applied to enhance image visualization.	L3	CO3	7 M
		OR			
8	a)	Compare and contrast various image visualization techniques, highlighting their unique applications and advantages.	L2	CO2	7 M
	b)	Explain the key techniques used for shape analysis in image processing.	L1	CO2	7 M
		UNIT-V			
9	a)	Illustrate the significance of representing relationships through Visualization of Relations in data analysis.	L2	CO3	7 M
	b)	Assess the challenges associated with Text Visualization, considering factors such as scalability, interpretability, and usability.	L3	CO4	7 M
		OR			
10	a)	Define the term "Infovis" and describe key features of Table Visualization in information visualization.	L1	CO4	7 M

b)	Compare and contrast Multivariate Data	L2	CO4	7 M
	Visualization and Text Visualization,			
	highlighting their respective strengths and			
	weaknesses.			